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Abstract 

The curve resolution (CR) methods attract substantial research affords aimed to discover 

knowledge of multicomponent systems. The objective of soft modeling, as special part of CR 

methods, is to resolve a second-order bilinear data matrix into its contributing matrices 

without prior knowledge about the chemical or physical model of system under study. The 

obtained results by soft modeling multivariate curve resolution methods often are not unique 

and are questionable because of rotational ambiguity. It means a range of feasible solutions 

equally fit experimental data. Due to rotational ambiguity, the accuracy of the result of soft 

methods was abolished by systematic error in case of quantitative analysis. Aiming to 

increase the accuracy, the range of solutions can be reduced by applying the useful 

knowledge of the studied chemical system as constraints.  

It seems when there is no unique solution for the system, consideration of all feasible 

solutions (comparing with one solution that can be obtained with several multivariate curve 

resolution methods) can provide useful information about system and process under study.  

Introduction to a novel grid search method 

SMCR methods method can calculate the area of the feasible regions for each component, 

while they are not able to detect which solutions of these feasible regions are corresponding 

with each other. Therefore, it is valuable to modify pervious methods to develop one new 

method with this ability. In this study, firstly in chemometric literature, a novel grid search 

method is proposed. The method can provide the area of feasible solutions associated to each 

component and correspondence relations among solutions simultaneously. 

This introduced method gives an opportunity to investigate constraints effect and to compare 

obtained feasible solutions by different approaches as well.   
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I. Investigation of the Equality Constraint Effect on the Reduction of Rotational 

Ambiguity in Three-Component System Using a Novel Grid search Method 

Regarding to chemometric literature, a survey of useful constraints for the reduction of the 

rotational ambiguity is a big challenge for chemometrician. It is worth to study the effects of 

applying constraints on the reduction of rotational ambiguity, since it can help us to choose 

the useful constraints in order to impose in multivariate curve resolution methods for 

analyzing data sets. In this work, we have investigated the effect of equality constraint on 

decreasing of the rotational ambiguity. For calculation of all feasible solutions corresponding 

with known spectrum, a novel systematic grid search method based on Species-based Particle 

Swarm Optimization is proposed in a three-component system.  

II. A Systematic Investigation on Meaning of Feasible Band Boundaries in Multivariate 

Curve Resolution of a Three-Component System 

In the different studies by Abdollahi et al. and Rajko, different approaches were compared on 

the meaning of feasible band boundaries in MCR methods for two component system. It was 

considered that all approaches characterize the same feasible band boundaries in the case of a 

two-component system. With the same aim, to best of our knowledge firstly in the literature, 

grid search and MCR-Bands approaches are examined for the calculation of band boundaries 

of feasible solutions of a three component system. The MCR-Bands method based on 

exploring of the extreme values of the Signal Contribution Function (SCF) relative to the 

elements of the transformation matrix by a non-linear constrained optimization algorithm 

defines the estimated boundaries of the feasible solutions band. Aimed at evaluation of two 

methods in meaning of band boundaries, the SCF is calculated for all the explored feasible 

solutions by a grid search method based on Species Particle Swarm Optimization (SPSO) and 

results are displayed in appropriate mesh and contour plots. The extreme values of SCF are 

determined and compared with the results of MCR-Bands program.  

III. Newer Developments on Analytical Self-Modeling Curve Resolution (SMCR) 

Analytical SMCR methods resolve the data set to all feasible solutions using only non-

negativity constraints. Lawton-Sylvester method was the first presented direct method to 

analyze a two-component system and it was generalized as Borgen plot for determining the 

feasible regions in three-component system. It seems to require the geometric view for 

considering curve resolution methods stopped general investigation on the Borgen work for 

20 years. Then, Rajkó and Istevan revised and elucidated principles of existing theory in 
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SMCR methods and subsequently introduced computational geometry tools for developing an 

algorithm to draw Borgen plot in three-component system. Although, the analytical SMCR 

methods are definitely fast, but their inability in analysis of the data set with immoderate 

noise and in implementation of constraints limits their application. In this study, analytical 

SMCR methods will be described with simplest concepts and details of a developmental type 

of Borgen plot drawing algorithm will be given. Subsequently, for the first time in the 

literature, the equality and the unimodality are successfully implemented in the Lawton-

Sylvester method. To end, a state-of-the-art procedure was proposed to impose equality 

constraint in the Borgen plot.  

IV. Users’ guide to LSandBP 

Toolbox for the computation of the feasible solutions of two and three component systems 

using analytical SMCR methods. 

A new Graphical User friendly Interface (GUI) is presented in MatLab computer program to 

introduce the abilities of analytical SMCR methods in resolving two-way data set to pure 

factors. Currently, this interface provides the direct computation of feasible regions and bands 

associated to components in two and three component systems using the Lawton-Sylvester 

and Borgen plot methods, respectively. The result can also be provided by implementing the 

equality and unimodality constraints in Lawton-Sylvester method and the equality constraint 

in Borgen plot. A prominent feature of the representation in this GUI is an interactive visual 

inspection of constraint effects on the feasible regions and bands. 

V. Definition and Detection of Data based Uniqueness 

Incorporation of some useful information may lead to drastically decreasing the ambiguity in 

the analysis of bilinear data sets by the curve resolution tasks. Some profiles with specific 

condition could be resolved uniquely under non-negativity constraint in the decomposition of 

a two-way data set. Uniqueness condition of minimal constraint systems (termed data based 

uniqueness) remains as a mysterious question in the literature. In this study, for the first in the 

literature, data based uniqueness is investigated in details and general procedure based on 

data set structure information is presented for detection of profiles in which recovered 

unambiguously in minimal constrained SMCR. Close inspection of local rank information 

and Borgen plot results lead to devise the comprehensive theorem which could be considered 

as a corner-stone of data based uniqueness detection.  
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List of Figures 

Figure 1.1 Recovery of the concentration profile of the nth compound by window 

factor analysis. (a) SVD on the raw data matrix and determination of the 

concentration window, R (steps 1 and 2); (b) SVD on the matrix formed by 

suppression of the concentration window of the nth component, R0 (step 3); (c) 

recovery of the part of the spectrum of the nth component orthogonal to all the 

spectra in R0, Vn
To

 (step 4); and (d) recovery of the concentration profile of the nth 

component (step 5).
 
 

 

12 

Figure 1.2 Application of SubWindow Factor Analysis (SWFA) for resolution. (a) 

Concentration profiles of A, B, and C and subwindows used for the resolution of 

component B (first containing A and B compounds and second containing B and C 

compounds). (b) The A,B plane is defined by the pure spectra of A and B (sA, sB) and 

the plane B,C by the pure spectra of B and C (sB, sC). The intersection of both planes 

must be necessarily the pure spectrum of B. 
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Figure 1.3 Determination of feasible bounding profiles investigated and published by 

Lawton and Sylvestre
12

a: PC1-PC2 plot: the numbered points given by normalization 

and factorization of the original data represent the spectral profiles and should fall 

into the straight line. The bounds can be given by the intersection of solid and broken 

lines with scores line. 
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Figure 1.4 Three-dimensional representation of ssq as a function of the elements x2 

and x3; three areas of feasible solutions are revealed. See the Numerical Experiments 

section for details on the data used to generate this graph. 
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Figure 1.5 The three feasible regions (shadowed areas) according to the three 

components that are the transformed true profiles should be positioned in those 

regions. The dashed dotted lines form the two Borgen simplexes (i.e. triangles). The 

feasible regions are their appropriate sections with the complete limiting function, 

which is marked with solid tick line. 
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Figure 3.1 Pure concentration (C, 3.1a), spectral profiles (S, 3.1b) and surface plot of 

the simulated HPLC-DAD data (R, 3.1c) of multiplication of C by S.  
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Figure 3.2 Pure concentration (C, 3.2a), spectral profiles (S, 3.2b) and simulated 

HPLC-DAD data (R, 3.2c) of multiplication of C by S. The data set generated by 

0.3% noise level (R, 3.2d).  
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Figure 3.3 Pure concentration (C, 3.3a), spectral profiles (S, 3.3b) and simulated 

HPLC-DAD data (R, 3.3c) of multiplication of C by S. 
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Figure 3.4 True concentration (C, 3.4a), spectral profiles (S, 3.4b) and simulated data 

sets (R, 3.4c) of multiplication of C by S in the simulated cases.  
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Figure 4.2.1 Illustration of the obtained results by the optimization method in one 

iteration of the grid search method. (The x1, y1 display labels of x-axis and the x2, y2 

are labels of y-axis in two plots. The x1 and x2 are the coordinates resulting of the 

projection of row vectors in the spectral space; y1 and y2 depict the coordinates of the 

projected column vectors in the concentration space) 

 

55 

Figure 4.2.2 Depiction of complementary solutions with the coordinates of known 

profile in a three-component system. 
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Figure 4.2.3 The obtained feasible solutions using the proposed method under non-

negativity constraint for noisy and noiseless data sets, The colored lines relate to the 

boundaries of solutions obtained under non-negativity constrain; dashed and solid 

lines display this solutions for noisy data and noiseless data, respectively. a: spectral 

solutions, b: concentration solutions. In both cases (a, b) left panels show the 

obtained areas of feasible solutions and right panels display the translated profiles of 

feasible regions. 
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Figure 4.3.1 The obtained feasible solutions for data sets with different noise levels 

(0, 0.3% of maximum magnitude of absorbance) using the proposed method. a: 

Range of feasible spectral profiles, b: Range of feasible concentration profiles. The 

colored lines relate to the boundaries of solutions obtained under non-negativity 

constrain; dashed and solid lines display this solutions for noisy data and noiseless 

data, respectively. The colored areas display solutions obtained under non-negativity 

and equality constraints (the spectrum of the first component is supposed as known 

spectrum). The area with light color is associated to noisy data whereas the areas with 

dark color display the solutions for noiseless data set. Feasible bands also were 

shown in the same way as well. 
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Figure 4.3.2 A graphical model for the representation of relation between fixed point 

in spectral space and the deduced line in concentration space. The colorful stars 

depict the coordinates of true profiles in abstract space as one obtained feasible 

solution when equality constraint was imposed, the dashed black lines demonstrate a 

triangle which is created by true profiles. Blue star shows the coordinates of known 

spectrum and the red line in concentration space is the restricted space corresponding 

to known spectrum.  
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Figure 4.3.3 The representation of the relation between fixed point in spectral space 

and the deduced line in concentration space in case of a data set with moderate noise 

(noise level is 0.3% of maximum magnitude of data). 
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Figure 4.3.4 Representation of the constructed concentration and spectral profiles 

that used for making first example. For the generating of these profiles, the obtained 

feasible solutions of analysis of previous data are used. a: constructed spectral 

profiles (right panel) and the position of these profiles in concentration space (left 

panel), b: translated concentration profiles (right panel) and the coordinates of these 

profiles in spectral space (left panel). Dashed line and yellow stars display the formed 

triangle by this feasible solution in concentration and spectral space. 
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Figure 4.3.5 The simulated data set of the concentration and spectral profiles 

displayed in Figure 4.3.4, and its corresponding concentration and spectral abstract 

space calculated using MCR methods. As this figure shows obtained data set and 

abstract spaces are exactly same with the displayed data set and abstract space in the 

mentioned example in the manuscript. It is a trivial case, because for the constructing 

of the concentration and spectral profiles, here, the feasible solutions of the first 

example were used. It should remember that feasible solutions of one data set have 

different shape causes by rotational ambiguity but, they will be result in the same 

data set and abstract spaces. 
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Figure 4.3.6 The obtained feasible solutions for the first example using the proposed 

method under non-negativity and equality constraints; where the spectrum of third 

component is supposed as known spectra. For best observation these results were 

shown on the obtained feasible solution under non-negativity constraint. a: Range of 

feasible spectral profiles, b: Range of feasible concentration profiles; white areas with 

colored boundary relate to solutions obtained under non-negativity constraint, while 

the colored areas display solutions obtained under non-negativity and equality 

constraints. Feasible bands also were shown in a same way as well. 
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Figure 4.3.7 Representation of the constructed concentration and spectral profiles 

that used for making the second example. a: constructed spectral profiles (right panel) 

and the position of these profiles in concentration space (left panel), b: translated 

concentration profiles (right panel) and the coordinates of these profiles in spectral 

space (left panel). Dashed line and yellow stars display the formed triangle by this 

feasible solution in the concentration and spectral space. Figure 4.3.5 shows the data 

set and abstract space of this example. 
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Figure 4.3.8 The obtained feasible solutions for the second example using the 

proposed method under non-negativity and equality constraints; where the spectrum 

of third component is supposed as known spectra. a: Range of feasible spectral 

profiles, b: Range of feasible concentration profiles; white areas with colored 

boundary relate to solutions obtained under non-negativity constraint, while the 

colored areas display solutions obtained under non-negativity and equality 

constraints. Feasible bands also were shown in the same way as well. 
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Figure 4.3.9 Representation of the constructed concentration and spectral profiles 

that used for making third example. a: constructed spectral profiles (right panel) and 

the position of these profiles in concentration space (left panel), b: translated 

concentration profiles (right panel) and coordinates of these profiles in spectral space 

(left panel). Dashed line and yellow stars display the formed triangle by this feasible 

solution in concentration and spectral space. Figure 4.3.5 shows the data set and 

abstract space of this example. 
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Figure 4.3.10 The obtained feasible solutions for the third example using the proposed 

method under non-negativity and equality constraints; where the spectrum of third 

component is supposed as known spectra. a: Range of feasible spectral profiles, b: Range of 

feasible concentration profiles; white areas with colored boundary relate to solutions obtained 

under non-negativity constraint, while the colored areas display solutions obtained under 

non-negativity and equality constraints. Feasible bands also were shown in the same way as 

well.  
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Figure 4.4.1 The figure illustrates the computation of SCF value for every feasible 

solution of one component. 
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Figure 4.4.2 A graphical image of the volume of SCF values in mesh plots that they 

calculated by the grid search method, a: Concentration abstract space, b: Spectral 

abstract space. 
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Figure 4.4.3 The estimated band boundaries by grid search method, a: Concentration 

feasible solutions, b: Spectral feasible solution, the yellow and pink points show the 

coordinates of lower and upper estimated band boundaries in abstract space, 

respectively. The obtained band boundaries displayed using yellow and pink dashed 

lines on feasible band. 
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Figure 4.4.4 The demonstration of MCR-Bands result when true profiles used as 

initial estimation, a: Spectral feasible solutions, b: concentration feasible solution, the 

yellow and pink points show the coordinates of lower and upper estimated band 

boundaries in abstract space, respectively. The obtained band boundaries display with 

yellow and black dashed lines on feasible band. 
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Figure 4.4.5 Initial estimation used in MCR-Bands method which it is chosen from 

SMCR solutions. 
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Figure 4.4.6 The maximum surface of SCF values volume related to second 

component's concentration feasible region, the image show the existence of maxima 

in this SCF values volume. 
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Figure 4.5.1 An illustration of Lawton-Sylvester plot for the two-component system. 

a: depiction of limiting lines outlining the inner boundaries (red dashed-point lines) 

and the outer boundaries (pink lines); blue lines indicate the no-negative lines starting 

from the origin and dark blue dashed line involves the coordinates of response 

vectors, b: a Lawton-Sylvester plot for two component system, red and green vertical 

line display the identified feasible regions corresponding with two components. 
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Figure 4.5.2 a and b show the feasible solutions of the data set in concentration and 

spectral spaces, respectively. 

 

90 

Figure 4.5.3 The figure displays the result of analysis of HPLC-DAD data set 

(Figure 3.1c) using Lawton-Sylvester method under equality constraint when the 

spectral profile of the second component is known. a: a schematic of the algorithm of 

imposing the equality constraint in Lawton-Sylvester method. b and c show the 

feasible solutions affected by the equality constraint in concentration and spectral 

spaces, respectively. 
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Figure 4.5.4 The figure displays the result of analysis of HPLC-DAD data set 

(Figure 2c) using Lawton-Sylvester method under unimodality constraint a: a 

schematic of steps 2 and 3 in the algorithm of imposing the unimodality constraint in 

Lawton-Sylvester method, b: concentration feasible solutions, c: spectral feasible 

solutions.  
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Figure 4.5.5 The geometrical demonstration of the abstract space in a three-

component system. 
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Figure 4.5.6 a: Illustration of outer polygon computation procedure in Borgen plot. 

Plot shows the sides of inner polygon in spectral space define the coordinates of 

vertices of outer polygon. The duality correspondence between a side of inner 

polygon (pink line) in spectral space and a vertex of outer polygon in concentration is 

represented by pink double arrow. b: Borgen triangles and permitted regions for the 

feasible region of components determined by simplex rotation algorithm; sides of 

Borgen triangles are shown with dashed lines, while the vertices of triangles with 

numbered points; the feasible parts of outer polygon are displayed with light green 

color. 
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Figure 4.5.7 A three-component HPLC-DAD data set and the result of its resolution 

using Borgen plot. a: true concentration profiles (C), b: true spectral profiles (S), c: 

the data set generated from C and S, d: concentration solutions, b: spectral solutions. 

In both cases (d, e) left panels show the obtained areas of feasible solutions and right 

panels display the translated profiles of feasible regions. 
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Figure 4.5.8 A three-component HPLC-DAD data set with possibility of unique 

resolution of one profile under minimal information. a: true concentration profiles, b: 

spectral profiles, c: the simulated HPLC-DAD data. d: feasible solutions of the data 

set in concentration space, e: the determined spectral feasible solutions. 
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Figure 4.5.9 Demonstrates the steps of imposing the equality constraint in Borgen 

plot. 
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Figure 4.5.10 Final representation of applying equality constraint. 
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Figure 4.6.1 GUI windows of the LSandBP program. 
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Figure 4.6.2 GUI window of the LSandBP program after loading a two-component 

system. 
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Figure 4.6.3 GUI windows of the LSandBP program after loading a three-component 

system. 
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Figure 4.6.4 GUI window of LSandBP program after changing the option of result 

demonstration in GUI window shown in Figure 4.6.2. 

 

115 

Figure 4.6.5 Creating the same plot outside of the GUI screen by the mouse right 

click on the plot. 
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Figure 4.6.6 Illustration of non-negativity lines in feasible regions by pushing the 

"lines for non-negativity constraint" button in GUI window shown in Figure 4.6.2. 
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Figure 4.6.7Feasible solution obtained from imposing the unimodality constraint on 

concentration profile of component 2. 
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Figure 4.6.8 Feasible solution obtained from imposing the equality constraint in 

Lawton-Sylvester method when spectral profile of component 1 is known. 
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Figure 4.6.9 Feasible solution obtained from imposing the equality constraint in 

Borgen plot when the spectral profiles of components 1, 2 are known. 
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Figure 4.6.10 laying the profiles and their coordinate on the plots, yellow points in 

feasible regions and white lines in feasible bands show the position of simulated 

concentration profiles on feasible region and band in GUI. 
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Figure 4.6.11 Feasible solutions (4.6.11b) obtained from imposing the equality 

constraint when a point (4.6.11a) is selected from the feasible region. 
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Figure 4.7.1 A schematic of feasible space associated to a three-component system. 
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Figure 4.7.2 An illustration of abstract space of a data set with a unique profile. 
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Figure 4.7.3 Visualization of the geometry of abstract spaces in U-space (a), in V-

space (b) for  case I. c and d: illustrate columns and rows of data matrix which are 

located on outer polygon to define the fixed subspace for interfering compounds 

(components 1, 2) of unique profile (components 3) in V-space. e and f: show 

feasible concentration (C), spectral profiles (S) which generate the data set case I 

(Figure 3.4c-case I). The horizontal lines whose have the same color with profiles of 

components display the window of presence of components. 
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Figure 4.7.4 Visualization of the geometry of abstract spaces and feasible bands a: in 

concentration space, b: in spectral space for case (II-a). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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Figure 4.7.5 Visualization of the geometry of abstract spaces and feasible bands a: in 

concentration space, b: in spectral space for case (II-b). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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Figure 4.7.6 Visualization of the geometry of abstract spaces and feasible bands a: in 

concentration space, b: in spectral space for case (III-a). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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Figure 4.7.7 Visualization of the geometry of abstract spaces and feasible bands a: in 

concentration space, b: in spectral space for case (III-b). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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Figure 4.7.8 Visualization of the geometry of abstract spaces and feasible bands a: in 

concentration space, b: in spectral space, for case (IV-a). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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Figure 4.7.9 Visualization of the geometry of abstract spaces and feasible bands a: in 

concentration space, b: in spectral space, for case (IV-b). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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Figure 4.7.10 Visualization of the geometry of abstract spaces and feasible bands a: 

in concentration space, b: in spectral space, for case (V). In feasible bands plot, the 

horizontal lines whose have the same color with profiles of components display the 

window of presence of components. 
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List of Schemes 

Scheme 1.1 An illustration of grid search algorithm in three-component system 

 

19 

Scheme 1.2 An illustration of tangent and simplex rotation in Borgen algorithm
59

 

 

22 

Scheme 3.1 Diagram demonstrating Beer-Lambert absorption of a beam of light as it 

travels through a cuvette of size l containing solution of concentration c and molar 

absorptivity ε. 

 

38 

Scheme 3.2 Diagram demonstrates decomposition of spectra R into corresponding 

concentration (C) and absorptivity (S) matrices. The matrix E is representative of the 

experimental noise associated with any real measurement. 

 

39 

Scheme 4.1.1 a: Illustration of a feasible solution in a three-component system. b: 

Depiction of complementary solutions with the coordinates of spectral profile in a three-

component system. 

 

52 

Scheme 4.2.1 A schematic of SPSO algorithm. 

 

57 

Scheme 4.5.1 The algorithm determining the complete limiting curve. The lines and 

points are marked with L and P respectively. The green line is the feasible parts on outer 

polygon are related to the component which its limiting curve should be recovered. The 

magenta lines mark the feasible solutions of complementary components on outer 

polygon. 
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