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Abstract 

 
Self Modeling Curve Resolution (SMCR) is a class of techniques concerned with 

estimating pure profiles underlying a set of measurements on chemical systems. In 

general, the estimated profiles are ambiguous (non-unique) except if some special 

conditions fulfilled. Implementing the adequate information can reduce the so-called 

rotational ambiguity effectively, and in the most desirable cases lead to the unique 

solution. Therefore, studies on circumstances resulting in unique solution are of particular 

importance. In bilinear chemical (e.g., spectroscopic) data matrix, there is a natural 

duality between its row and column vector spaces using minimal constraints (non-

negativity of concentrations and absorbances). The correspondence between the points in 

the considered space and the hyperplanes in the dual space can be applied to extract 

information in SMCR analysis. Infact, the conditions for achieving a unique solution can be 

investigated based on the duality concept as a general principle 

I. Duality based investigations in SMCR 

 

A. Clarification and visualization of the duality concept of curve resolution 

using three-component non-negative bilinear chemical data 

 

In this work, it has been intended to clarify the duality concept and implement it in data 

structure visualization. Accordingly, duality principle is used to visualize the relationship 

between data points in each space and non-negativity borders in its dual space. Duality 

concept state that one point in one data space is corresponding with one hyperplane in the 

other space. Therefore, by implementing this concept and using data points, it has been 

visualize that the intersection of the all defined hyperplanes generates the outer 

boundaries in the dual mode. In order to reach a better understanding of this concept and 

its application in SMCR, hypothetical chromatographic system of three components is 

visualized in PC spaces. 
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B. Duality based direct resolution of unique profiles using zero concentration 

region information 

The duality relation can also be the proposed approach to exploit more information of the 

chemical data matrix if additional knowledge of the system is available. In this section, 

by applying the reliable information about the concentration window of components, the 

conditions of unique resolution has been explored. Therefore, the conditions of the 

unique solution according to duality concept and using zero concentration region 

information is intended to show using simulated and experimental datasets. It gives an 

easy way for finding how to use zero concentration region information based on duality 

in special cases to obtain unique solutions in SMCR methods. Additionally, the 

knowledge of a pure profile (e.g. spectrum) is used to discovery of information in SMCR 

method. In this way, graphical tools of PCA are utilized for illustrating the data structure.  

 

II .Development on generalized rank annihilation problem by implementing 

duality 

The analytical chemist is frequently confronted with the problem of analyzing complex 

mixtures in the presence of any component in the sample that is not included in the 

calibration model. In these cases, it is desirable to be able to obtain quantitative 

information for a particular component without concern for the rest of the components in 

the sample. The property of quantitation of an analyte in the presence of unknown 

constituents is called second-order advantage. Additionally, in recent studies it has been 

shown that when the solution is unique or information is available for obtaining the 

unique solution, the duality concept,is a useful approach to extract information in SMCR. 

In a bilinear data matrix, there is a natural duality between its row and column spaces and 

it is possible to transform the coordinates in row space to the coordinates in column space 

and vice versa without using any constraint. In this section, a novel algorithm to achieve 

“second order advantage” is introduced based on duality. Moreover, informative 

geometrical visualizations beside mathematical formulas are presented for the proposed 
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method. In this way, one of the most common approaches for visualization of data, 

Principle Component Analysis (PCA), is used. It is shown in order to determine λ, the 

value related to the contribution of the constituent of interest in an unknown mixture, the 

subspace of the all interfering compounds should be defined properly. Therefore, a matrix 

of   values will be obtained in a systematic way and it is possible to calculate more 

precise estimation of  .  

 

III. A rank reduction based normalization and visualization of rank 

annihilation 

A. A rank reduction based normalization 

In this work a special normalization for a particular component in the system by using 

pure component spectra is derived. By implementing the general rank annihilation 

Wedderburn formula, it has been shown that the introduced normalization specifies the 

intensity of the same component in the dual mode. The interesting point is that the 

derived normalization is particularly applied for the analyte of interest without 

considering the remain part of the abstract space. By the help of the figures and plots, the 

relation between “known profile” and “normalization” is visualized. The introduced 

normalization result in the rank reduction for the known component. 

 

B. Visualization of rank annihilation 

Although rank annihilation is a crucial concept in chemometrics, but it has not been 

investigated considering the dimensionality of the data. In this work, illustrative 

visualization of rank annihilation procedure has been provided. It has been illustrated that 

the reduction of the dimension of the residual, when standard matrix is subtracted from 

the mixture, can be monitored in rank annihilation problem. Therefore, in this section 

graphical visualizations are provided to depict the relation of “rank” and 

“dimensionality” when the standard component is annihilated from the data. 
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IV. Soft-trilinear constraints for improved quantitation in Multivariate Curve 

Resolution 

When a set of samples is to be analyzed with one data matrix per sample, the data is often 

presumed to have “trilinear” structure if the profile for each compound does not change 

shape or position from one sample to the other. By applying this information as a 

trilinearity constraint in SMCR methods, overlapping peaks related to the pure 

compounds of interest can be resolved in a unique way. In practice, many systems have 

non-trilinear behavior due to deviation from ideal response, for example a sample matrix 

effect, or changes in instrumental response (e.g., shifts and/or changes in the shape of 

chromatographic peaks). In such cases, the trilinear model is not valid because every 

analyte does not have the same peak shape or position in every sample. In such cases, the 

unique profiles obtained by strictly enforced trilinearity constraints will not necessarily 

produce true profiles because the data set does not follow the assumed trilinear behavior. 

In this section, we introduce “soft-trilinearity constraints” and a new MATLAB program 

to permit peak profiles of the components of interest to have small deviations in their 

shape and position from sample to sample. In order to visualize the results, soft-

trilinearity constraints were incorporated into a systematic grid search algorithm for the 

case of a three-component system 
1
. This algorithm is general and can be applied to any 

MCR method. Results are provided for simulated noisy data with non-trilinear behavior 

and one experimental data set. The results show that implementing soft-trilinearity 

constraints reduces the range of feasible solutions considerably compared to the 

application of simpler non-negativity constraints. The results of this approach are 

compared to other methods including PARAFAC2 and MCR-ALS with hard-trilinearity 

constraints. It is shown that the methods employing hard-trilinearity constraints lead to 

incorrect solutions, or produce solutions outside the range feasible solutions.  
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